
EXCITATION OF A PHASE-TRANSFORMATION WAVE IN A METAL 

UNDER THE ACTION OF A SQUARE SURFACE HEAT PULSE 
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We approximate the phase-transformation wave excited in a metal by the action of 
a square surface heat pulse when its surface density is given and the time of ac- 
tion is varied. 

In the present study we consider the problem of calculating a diagram showing the dis- 
placement of the phase boundaries of a metal when it is acted upon by square heat pulses 
which differ in density of heat flux F and duration of the action t but have equal values of 
the parameter 

W = Ft ~ const (I) 

Figure 1 shows one of these diagrams for copper. The diagram expresses the final posi- 
tion (the final displacement) of the phase boundaries of vaporization and melting at the con- 
clusion of the action of square pulses of various duration t for a given value of the pa- 
rameter W = 1 J/mm a. 

The phase-transformation wave excited by an individual pulse is described by an essen- 
tially nonlinear heat-conduction problem. Using its numerical solution by means of com- 
puters, we obtained in the present study a generalization of the numerical data and that en- 
ables us to calculate almost completely on the diagram both the vaporization curve Yvap and 
the melting curve Yme- The latter is not amenable to calculation only between points 1 and 
2. It is quite obvious that there cannot be any extrema between them, and therefore the 
graphical interpolation of this region, carried out as a monotonic continuation of the well- 
grounded segments of the Yme curve, is entirely acceptable from the viewpoint of accuracy 
both for purposes of estimation and for more rigorous problems. 

As a result of the graphical interpolation of a small segment of the Yme curve, we can 
calculate completely the diagram showing the final position (final displacement) of the phase 
boundaries for any metal over a wide range of values of the heat-pulse parameters W and t. 

In [i] we formulated and solved in a one-dimensional approximation the most general 
thermophysical problem with two movable phase boundaries -- the melting front and the vapori- 
zation front. An analysis of this problem shows that under the action of the heat flux the 
system first develops transition phenomena, and when these are completed, the process enters 
a stationary regime; the temperature and velocity of the vaporization front are stabilized 
and take on the values T and v, while the velocity of the melting front approaches and coin- 
cides with the velocity of the vaporization front, and a stationary distance Xme is estab- 
lished between the two phase boundaries. For a stationary regime of this problem, we obtained 
the following solution: 

a T + (Lv/Cv) -- To 
F = v [ r v + L v + C v ( T - - T o ) ] ;  Xme-- in 

v Tme+ (Lv/C v) -- To " (2) 

In the present problem the kinetics of the vaporization are taken into account on the 
basis of Frenkel's theory and it is assumed that v = Vo exp (--Tm/T) , where vo is a value of 
the same order as the velocity of sound in metal; T m = e/k (e is the binding energy of an 
atom of the metal). 

If melting is precluded, then from the simpler one-dimensional model problem, in which 
the vaporization kinetics are also taken on the basis of Frenkel's theory [2, 3], we obtain 
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Fig. i. Diagram showing the final displacement of the 
phase boundaries Yvap (~m) and Yme (Dm) for copper as func- 
tions of the time of action t (sec) for W = 1 J/mm a. 

Fig. 2. Variation of f as a function of W/t (J/mma.sec) 
for some metals. 

an analogous solution for the stationary regime: 

a T - - T o  
F =  v[rv + C v ( T - -  To)]; x ~  In v Tree+ (Lv/C v) - -  To " (3) 

A comparison of (2) and (3)leads us to some important conclusions. Since for all metals 
the specific volumetric heat of vaporization r V is at least one order of magnitude higher than 
the specific volumetric heat of fusion LV, it follows that taking account of the melting 
process has practically no effect on the velocity of the vaporization front and its tempera- 
ture, so that the latter quantities can be determined in accordance with (3). It is also im- 
portant that the quantities Xme and ~e also practically coincide, with a difference of only 
a few percent. This means that the spatial separation of the melting, front from the vapori- 
zation front, Xme , in (2) can be expressed in terms of the quantity Xme in (3), representing 
the distance from the vaporization front to the isotherm of the reduced melting temperature 

(T~e = Tme + Lv/Cv). 

Thus, (3) can be used with sufficient justification for calculating the diagram of the 
final displacement both of the vaporization front and of the melting front. 

In addition to (3), the basis of the calculation also includes two equations for the 
same thermophysical problem with the melting front precluded: 

�9 ~--  v ~ ; v ( ~ ) = v e r f  - - ~  . 
(4) 

These equations relate to the transition process and are the result of a generalization of the 
numerical data of the machine solution of the problem indicated [4]. 

Integrating v(T) in (4) determines the displacement of the vaporization front with re- 
spect to its initial position 

t 

0 (5) 

where ~ is the running time of action of the heat pulse and t is its total duration. For 
the rest of our discussion, it is essential to transform (5) in such a way as to include the 
fundamental parameters of the heat pulse, t and W. Defining the density of the heat flux 
in terms of W and t, in accordance with (i), we can write, on the basis of (3), that 

cv[ T ] 
W_t : vrv[; f : 1 + -~v In (Vorvft/W - -  To �9 
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Fig. 3. Variation of ~ as a function of z for cop- 
per for various values of W: i) W = 0.I; 2) i; 3) 
i0; 4) i00 J/mm a. 

Fig. 4. Variation of U as a function of X for some 
metals. 

given parameters W and t. The nature of the variation of f as a function of W/t is shown in 
Fig. 2 for a number of metals. It can be seen from the figure that f depends weakly on W/t. 
As W/t varies by several orders of magnitude, the function f changes only by a few units. 

Taking account of (6) and carrying out further s we can represent (5) in 
the form 

w I 

Yvap= rv f ,  

where ~ is a certain dimensionless function which is equal, in turn, to the ratio of two 
other dimensionless functions, from which 

( 7 )  

2W2~ 2W a 
l = l ( z ) =  1 I erf~d~; ~ - -  af2r~l ~ ; z =  af2r~t g . 

o (8) 

The sequence of the calculation of Yvap is the following: for the given parameters W 
and t, we determine f from (6); then we determine z and I(t) in accordance with (8); and 
finally, we determine ~ from (7). This calculation procedure ensures that we can completely 
calculate the curve of the final position of the vaporization front Yvap on the phase- 
boundary diagram. There will be no segments of the curve which are not amenable to calcula- 
tion. This applies both to pulses which bring the process into a stationary regime, when 
t > Ttr , and to pulses which do not bring it into this regime whent < Ttr , where Ttr is the du- 
ration of the transitional process in accordance with (4). 

In Fig. 3 we show the function P = P(z) for Cu. As can be seen from the figure, this 
function has clearly defined maxima which depend on the value of the parameter W. For a 
given value W = const we find that as the parameter t increases, z will decrease and the 
function ~ will approach zero. The properties we have found for the function ~ mean that 
the curve of the final position of the vaporization front Yvap=Yvap(t) has a maximum and approaches 
zero asymptotically as t increases, which is shown in Fig. i.- The existence of a maximum on 
the Yvap curve was noted in [4-7]. 

The position of the melting front with respect to the vaporization front is defined with 
sufficient accuracy by the quantity ~e in Eq. (3), which, after changing to the pulse parame- 
ters W and t, we can represent in the form 

arvf t  

where the dimensionless function U = U(X) is defined by the expression 

(9) 
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TABLE I. Values of the Functions q, p~ and t a  

0 

0,1 
0,2 
0,3 
0,4 
0,5 

t~t<~tn 

0 
0,001 
0,004 
0,010 
0,024 
0,046 

5,73 
5,37 
5,00 
4,61 
4,25 
3,83 

0,6 
0,7 
0,8 
0,9 
1 

t2<~/~t3 

O, 078 
O, 133 
O, 224 
0,380 
1 

ta~t~f ,  

3,41 
2,98 
2,51 
1 ,98  
1 

U(X) = In (T~/ln X)--  To ; X: V~ 

r ~ e - - T o  W (10) 

Figure 4 shows the variation of U as a function of I for a number of metals. As can be 
seen from the figure, this function depends weakly on I. As I changes by several orders of 
magnitude, U changes by only a few units. 

The sequence of the calculations to obtain X~e is the following: for given values of W 
and t, we determine f from (6); then we determine I and U(X) in accordance with (i0); and 
finally, by (9), we find X~e. 

The final position of the melting front with respect to the initial position of the 
vaporization front is given by the sum Yme = Yvap + 4e, which, on the basis of (6)-(10), 
leads to the expression 

W I (z) arvt 
+ - W -  fU (~). Vme-- rv [ (11) 

This expression is applicable only to a stationary regime, when t ~rtr. The limiting case 
t = Ttr = tx in Fig. 1 corresponds to the point i. From (4) and (6) we obtained the follow- 
ing expression for tx 

tt = WZ/ar~f  z. (12) 

This is transcendental, since f = f(W/t), but it is completely solvable. Thus, the curve of 
the final position of the vaporization front Yme = Yme (t) can be calculated, in accordance 
with (ii), in the entire region t < tl, including the case t = tx. 

For a given W and a long pulse duration, intensive vaporization is not stimulated, ,and 
the transitional process becomes delayed, so that the condition Ztr ~ t is satisfied. If Ztr 
is one order of magnitude higher than the duration of the pulse (Ztr = 10t), then the condi- 
tion Yme = Yvap + X~e=X~e is satisfied, since Yvap ~X~e. 

In this case the vaporization may be disregarded, and the thermophysical process may be 
approximated as the excitation of a melting wave. This means that in the diagram of the 
final displacement of the phase boundaries (Fig. i) the segment of the Yme curve indicated 
by the characteristic points 2, 3, 4 can be determined with sufficient accuracy from the po- 
sition of the isotherm of the reduced melting point, in full accordance with the calculation 
method we described in [8]. To make use of this method, we must distinguish three values of 
the duration of the square pulse -- ta, ts, and t~ -- corresponding to the indicated charac- 
teristic points 2, 3, 4: 

W 2 
t~ = 10 ar~f------ T- ; t3 = MWZ; t~ = 5.73MW< (13) 

The equation for ta is obtained from (4) and the condition Ttr = i0ta and is solvable 
even if it is transcendental, since f = f(W/t). The equations for t3 and t~ were obtained 
in [8]. 

In accordance with [8], the calculation of the segment of the Ymell curve indicated by 
the points 2, 3, 4 can be carried out on the basis of the equations 

Yme---- ~INW; t---- f~MW 2 ( t 2 ~  t ~ t~); (14) 

Yme= ~INW; t = ~2MW 2 (t~ ~ t ~ t~), (i5) 

where N and M are quantities related to the thermophysical characteristics of the metals. 
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The functions ~, BI, and ~ appearingin (14) and (15) are dimensionless, and their values are 

shown in Table i. 

The data in the first and last columns of these tables, for the functions ~ and B2, 
enables us to calculateon the basis of (15) the segment of the Yme curve / from the point 4, 
for which n = 0 and 92 = 0.573 {Yme = 0, t~ = 0.573MW2), to the point 3 (the maximum of the 
Yme curve), for which ~ = i and B2 = I (Yme = NW; ts = MW2). 

If we begin the calculations on the basis of (14) from the bottom numbers of the n and 
BI columns in Table i, this will give us the calculation of the Yme curve in the direction 
from the point 3 to the point 2. It is also possible to have a case in which the table does 
not show the data which accurar determine the point 2 (t2, Yme2). The coefficients for 
the quantities t= and Yme2 may turn out to he between two adjacent rows of the table, the 

�9 ' ' . " , 1  
lower of which determlnes t2 and Yme2, while the upper determines t2 and Yme" 2, where t2 < t2 < 
t' 11 2, yme2 < Yme2 < Yme2. Then, resorting to linear interpolation and taking account of the 
semilogarithmic scale of the diagram, we find for yme2 

Yrnez= NW n" -~- (~l' - -  n") l g ( ~ / ~ 2  ) . (16) 

The method desc~ribed in this article for determining the functions Yme = Yme(t) and 
Yvap = Yvap(t) ensures the complete calculation of the diagram of the final displacement of 
the phase boundaries of the metal. The diagram illustrates visually and convincingly the 
fact that square heat pulses coinciding in the value of the parameter W but differing in the 
duration t of their action can bring about completely different results. When the pulse 
lasts a long time, it excites an essentially in-depth melting Nrocess, whereas when it lasts 
a short time, we have sublimative destruction with the formation of a small quantity of the 
liquid phase. 

The investigations show that for the same value of the parameter W the diagrams for 
different metals differ considerably among themselves. A comparison of these diagrams makes 
clear the specific individuality of the metals with respect to theidenticalheat-pulseaction. 

The diagram contains a great deal of generalized information concerning the results 
produced on a metal by the application of pulsed heat. It is important that this information 
can be obtained without expensive machine solutions of essentially nonlinear problems ap- 
proximating the thermophysical processes excited by the heat pulses. 

Furthermore, the diagrams provide some guideline information, important for the solution 
of technological problems connected with the action of heat pulses on metals. 

NOTATION 

CV, specific volumetric heat capacity; rv, specific volumetric heat of vaporization; LV, 
specific volumetric heat of fusion; a, thermal conductivity; Tme, melting point of the metal; 
Tm, a temperature which is characteristic of the metal and is determined from the condition 
kT m = E; ~, binding energy 1of the atom; k, Boltzmann constant; W, surface density of heat- 
pulse energy; To, initial temperature. 
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FLOW OF A THIN FILM OF A VISCOUS LIQUID IN A GAS JET 

Yu. I. Abramov UDC 532.529.5 

An approximate formulation is considered for the steady-state wave flow of a 
thin film of viscous liquid subject to tangential frictional stresses at the 
boundary. Measurements have been made on the stability limit for droplet de- 
tachment, and it has been found that the detachment rate and fractional compo- 
sition of the droplets are dependent on the boundary conditions. 

Vapor--liquid and gas--liquid media are widely used in power systems and various engineer- 
ing devices, which has led to interest in flows of thin films of liquid at Refi = 5-400, 
which are characteristic of the natural conditions at the walls of equipment and the corres- 
ponding flow region with capillary waves on the surface [i]. 

There are papers [i, 2] on the basic laws of the wave motion of a thin film for flow in 
a constant field of mass forces, and these have been extended [3, 4]. However, the scheme 
used there did not have tangential frictional stresses at the free boundary of the film, so 
it was impossible to extend the conclusions and equations to the flow of a film in a gas jet, 
where the viscous interaction between the phases is responsible for tangential frictional 
stresses To at the interface. 

We consider the case where the film is acted on by a mass force strength j, while the 
surface is in a gas flow, with the gas pressure constant along the flow direction (3P"/3x = 
0); we assume that there is no heat or mass transfer in the wail--film-gas system, while To is 
taken as uniformly distributed over the film. 

Following [I], the current thickness of the film is specified as 

8 = 8o (1 + ~), ( l )  
where ~ is some function of the coordinate x and time t, which defines the deviation of the 
film thickness from the mean value ~o. 

We restrict consideration to steady-state wave flow, where any function of ~ satisfies 

aF (~) = - -  k aF (~) , 

a t  a x  ( 2 ) 

where k is the phase velocity of the waves. 

We also assume that 6Y% and a/% should be small. 

With these assumptions, the wave flow can be described by a system of equations consist- 
ing of the equation of motion in the Navier-Stokes form: 

a 4  . a,4 I 
at  +v'~-~x +v" av = - p '  

and the equation of continuity 

a (p'~') a8 
a x  at ' 

OP' ~' 
ax + ix + p, v2v'~ (3) 

(4) 

where 
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